New Joint Commission
Radiology Standards

“July 1, 2015”

Duke Eldridge, M.S., DABMP
Medical Physicist

kansasradiationphysics.com
New Joint Commission Radiology Standards

This presentation is an “overview”. Please refer to the publications for the definitive standards.

“July 1, 2015”

Duke Eldridge, M.S., DABMP
Medical Physicist

kansasradiationphysics.com
It all started with MIPPA
“Advanced Diagnostic Imaging Accreditation”
Effective 1/1/12

In order to bill under “Medicare Part B”, imaging centers became accredited in CT, MRI, and Nuclear Medicine.

Hence, imaging centers became ACR accredited to get reimbursed. It seems standards are evolving to be similar to ACR Accreditation requirements.
It all started with MIPPA
“Advanced Diagnostic Imaging Accreditation”
Effective 1/1/12

In order to bill under “Medicare Part B”, imaging centers became accredited in CT, MRI, and Nuclear Medicine.

Hence, imaging centers became ACR accredited to get reimbursed. It seems standards are evolving to be similar to ACR Accreditation requirements.
News Item

Joint Commission Announces New and Revised Diagnostic Imaging Standards
Changes to be implemented in two phases beginning in July 2014

December 20, 2013
By Elizabeth Eiken Zhan, Media Relations Manager

View the multi-media news release

(OAKBROOK TERRACE, Ill. – December 20, 2013) Today, The Joint Commission announced changes to its standards for accredited hospitals, critical access hospitals, and ambulatory health care organizations that provide diagnostic imaging services, including ambulatory organizations that have achieved Advanced Diagnostic Imaging certification. The changes will be effective July 1, 2014 with additional requirements to be phased in by 2015.

The standards changes relate to either quality and safety issues that were needed to more fully address the evolution of health care delivery practices, or expanding upon the current Joint Commission requirements, such as those related to magnetic resonance imaging. The revisions incorporate recommendations from diagnostic imaging experts, professional associations, and accredited organizations on topic areas that must be evaluated to ensure the safe delivery of diagnostic imaging services.

"With these updates, The Joint Commission’s goal is to ensure that our imaging standards remain up-to-date and sufficiently address quality and safety," said Margaret YanAmore, MHS, executive vice.
TJC issued identical Hospital & Ambulatory Care Standards for Diagnostic Imaging Services

This presentation discusses the hospital standards

“Now Probably Effective 7/1/15”
Initial Implementation Schedule

Phase I July 1, 2014
CT, NM, PET, MRI, Training, Safety

Phase II 2015
Fluoroscopy, qualifications, Dental Cone beam CT
We should know final requirements by 12/31/14

CT, NM, PET, MRI, Training, Safety

“Postponed until 7/1/15”

Fluoroscopy, Qualifications, Dental Cone beam CT

Fluoro & Dental not mentioned yet…
Recently Added…

9/3/14 Revisions to Diagnostic Imaging Standards

 Comments open until 10/24/14

9/23/14 Medical Equipment Maintenance

General Maintenance Standards
Accreditation

Expert feedback needed on revised diagnostic imaging standards through October 24
Clinicians and radiology staff with expertise in diagnostic imaging are encouraged to provide feedback on a new field review available through October 24. Earlier this year, The Joint Commission postponed the implementation of new and revised diagnostic imaging requirements because it was determined that further research was needed to ensure that the new standards sufficiently supported improvements in quality and safety. The field review addresses:

- Minimum qualifications for radiologic and nuclear medicine technologists who perform computed tomography (CT) exams.
- Orientation of technologists on safe practices related to the provision of diagnostic imaging
- Documentation of CT radiation dose

The revised requirements will apply to accredited hospitals, critical access hospitals and ambulatory care organizations that provide diagnostic imaging services, including those ambulatory organizations that have achieved Advanced Diagnostic Imaging certification. (Contact: Joyce B. Marshall, jmarshall@jointcommission.org)
Modified Imaging Standards, 9/17/14 “for comment”
Medical Equipment Maintenance for Critical Access Hospitals
Published 9/23/14 “Effective 1/1/15”
This presentation will summarize all three publications…

- **Equipment:** Maintenance & QC Schedule
- **Minimum competency, orientation, training** for radiology technologists
- **Annual physics** performance evaluations of imaging equipment
- **CT & MRI:** CT dose, dose DRL’s
- **Imaging Protocols:** Patient Size, Pediatric, Appropriate Exam done appropriately.
- **Safety:** Shielding Planning, Shielding Evaluation, MRI environment
“The critical access hospital maintains a written inventory of all medical equipment.”

“The critical access hospital identifies high-risk medical equipment on the inventory for which there is a risk of serious injury or death to a patient or staff member should the equipment fail.” Note: High-risk medical equipment includes life-support equipment.

“The critical access hospital identifies the activities and associated frequencies, in writing, for maintaining, inspecting, and testing all medical equipment on the inventory. These activities and associated frequencies are in accordance with manufacturers’ recommendations or with strategies of an alternative equipment maintenance (AEM) program.” Note: The strategies of an AEM program must not reduce the safety of equipment and must be based on accepted standards of practice.
The critical access hospital’s activities and frequencies for inspecting, testing, and maintaining the following items must be in accordance with manufacturers’ recommendations:

Equipment subject to federal or state law or Medicare Conditions of Participation in which inspecting, testing, and maintaining be in accordance with the manufacturers’ recommendations, or otherwise establishes more stringent maintenance requirements

Medical laser devices

Imaging and radiologic equipment (whether used for diagnostic or therapeutic purposes)

New medical equipment with insufficient maintenance history to support the use of alternative maintenance strategies

Note: Maintenance history includes any of the following documented evidence: Records provided by the hospital’s contractors, Information made public by nationally recognized sources, Records of the critical access hospital’s experience over time
Before initial use and after major repairs or upgrades of medical equipment on the medical equipment inventory, the critical access hospital performs safety, operational, and functional checks.

The critical access hospital inspects, tests, and maintains non–life-support high-risk equipment identified on the medical equipment inventory. These activities are documented.

The critical access hospital tests utility system components on the inventory before initial use and after major repairs or upgrades. The completion date of the tests is documented.

The critical access hospital inspects, tests, and maintains the following: Non–life-support high-risk utility system components on the inventory. These activities are documented.
Let’s get started with the Diagnostic Imaging Standards…
CT Technologist Orientation

“The hospital orients radiologic technologists who perform computed tomography (CT) examinations on radiation dose reduction techniques that incorporate the principles and concepts included in Image Gently® and Image Wisely®”

• Note 1: Information on the Image Gently® and Image Wisely® initiatives can be found: online at http://www.imagegently.org and http://www.imagewisely.org, respectively.

• Note 2: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.
CT Technologist Qualifications

“Technologists who perform stand-alone diagnostic computed tomography (CT) exams are qualified as follows:

- Have state licensure that permits them to perform stand-alone diagnostic CT exams

or

- Are registered and certified in radiography by the American Registry of Radiologic Technologists (ARRT)

Note 1: Advanced-level certification by ARRT in computed tomography is not required, although it would meet the intent of this element of performance.

Note 2: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions"
Tech Qualifications for CT/NM Studies

“Technologists who perform positron emission tomography (PET) or single photon emission computerized tomography (SPECT) combined with computerized tomography (CT) have one of the following qualifications:

- State licensure that permits them to perform multimodality or fusion imaging exams

- Registered and certified in radiography by the American Registry of Radiologic Technologists (ARRT) and have received additional training in nuclear medicine

- Certified as a nuclear medicine technologist by the Nuclear Medicine Technology Certification Board (NMTCB) and have received additional training on CT.”
MRI Technologist Orientation

“The hospital orients technologists who perform magnetic resonance imaging (MRI) examinations on safe MRI practices in the MRI environment, including the following:

• Patient screening criteria that address ferromagnetic items, medical implants and devices, and risk for nephrogenic systemic fibrosis (NSF)
• Proper patient positioning activities to avoid thermal injuries
• Equipment and supplies that have been determined to be acceptable for use in the MRI environment (MR safe or MR conditional) *
• MRI safety response procedures for patients who require urgent or emergent medical care
• MRI system emergency shutdown procedures, such as MRI system quench and cryogen safety procedures
• Patient hearing protection
• Management of patients with claustrophobia, anxiety, or emotional distress”

Footnote *: Terminology for defining the labeling of items in the magnetic resonance environment is provided in ASTM F2503 Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment (http://www.astm.org).
Physicist Qualifications

“For hospitals that provide diagnostic computed tomography (CT) services: The hospital verifies and documents that diagnostic medical physicists that support CT services have board certification in diagnostic radiologic physics or radiologic physics by the American Board of Radiology, or in Diagnostic Imaging Physics by the American Board of Medical Physics, or in Diagnostic Radiological Physics by the Canadian College of Physicists in Medicine, or meet all of the following requirements:

- A graduate degree in physics, medical physics, biophysics, radiologic physics, medical health physics, or a closely related science or engineering discipline from an accredited college or university

- Formal graduate-level coursework in the biological sciences with at least one course in biology or radiation biology and one course in anatomy, physiology, or a similar topic related to the practice of medical physics

- Documented experience in a clinical CT environment conducting at least 10 CT performance evaluations under the direct supervision of a board-certified medical physicist

Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.”
“For hospitals that provide diagnostic computed tomography (CT) services: The hospital establishes imaging protocols based on current standards of practice, which address key criteria including clinical indication, contrast administration, age (to indicate whether the patient is pediatric or an adult), patient size and body habitus, and the expected radiation dose range.”

(Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.)
CT Protocol Review

“For hospitals that provide diagnostic computed tomography (CT) services: The hospital establishes imaging protocols based on current standards of practice, which address key criteria including:

- clinical indication,
- contrast administration,
- age (to indicate whether the patient is pediatric or an adult),
- patient size and body habitus,
- and the expected radiation dose range.”

Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.
Very useful…
Medical Physics Testing...
CT Image Quality Physics Testing

“For hospitals that provide diagnostic computed tomography (CT) services: At least annually, a diagnostic medical physicist conducts a performance evaluation of all CT imaging equipment. The evaluation results, along with recommendations for correcting any problems identified, are documented. The evaluation includes the use of phantoms to assess the following imaging metrics:

-● Image uniformity
-● Slice thickness accuracy
-● Slice position accuracy (when prescribed from a scout image)
-● Alignment light accuracy
-● Table travel accuracy
-● Radiation beam width
-● High-contrast resolution
-● Low-contrast resolution
-● Geometric or distance accuracy
-● CT number accuracy and uniformity
-● Artifact evaluation”

•Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies
•performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.
CT Dose Physics

“For hospitals in California that provide diagnostic computed tomography (CT) services: At least annually, a diagnostic medical physicist does the following:

- Measures the actual radiation dose, CTDI_{vol} produced by each diagnostic CT imaging system at least annually for the following four CT protocols: adult brain, adult abdomen, pediatric brain, and pediatric abdomen. If one or more of these protocols is not used by the hospital, other commonly used CT protocols may be substituted.

- Verifies that the radiation dose (in the form of CTDI_{vol}) displayed by the CT imaging system is within 20 percent of the CTDI_{vol} displayed on the CT console. The dates, results, and verifications of these measurements are documented.

Note 1: This element of performance is applicable only applicable for systems capable of calculating and displaying radiation doses in the form of CTDI_{vol}.”

(Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.)
MRI Physics Testing

“For hospitals that provide magnetic resonance imaging (MRI) services: At least annually, a diagnostic medical physicist or MRI scientist conducts a performance evaluation of all MRI imaging equipment. The evaluation results, along with recommendations for correcting any problems identified, are documented. The evaluation includes the use of phantoms to assess the following imaging metrics:

- Image uniformity for all radiofrequency (RF) coils used clinically
- Signal-to-noise ratio (SNR) for all coils used clinically
- Slice thickness accuracy
- Slice position accuracy
- Alignment light accuracy
- High-contrast resolution
- Low-contrast resolution (or contrast-to-noise ratio)
- Geometric or distance accuracy
- Magnetic field homogeneity
- Artifact evaluation”
Nuclear Medicine Physics Testing

“For hospitals that provide nuclear medicine (NM) services: At least annually, a diagnostic medical physicist conducts a performance evaluation of all NM imaging equipment. The evaluation results, along with recommendations for correcting any problems identified, are documented. The evaluations are conducted for all of the image types produced clinically by each NM scanner (for example, planar and/or tomographic) and include the use of phantoms to assess the following imaging metrics:

- Image uniformity/system uniformity
- High-contrast resolution/system spatial resolution
- Low-contrast resolution or detectability (not applicable for planar acquisitions)
- Sensitivity
- Energy resolution
- Count-rate performance
- Artifact evaluation”
PET Physics Testing

“For hospitals that provide positron emission tomography (PET) services: At least annually, a diagnostic medical physicist conducts a performance evaluation of all PET imaging equipment. The evaluation results, along with recommendations for correcting any problems identified, are documented. The evaluations are conducted for all of the image types produced clinically by each PET scanner (for example, planar and/or tomographic) and include the use of phantoms to assess the following imaging metrics:

- Image uniformity/system uniformity
- High-contrast resolution/system spatial resolution
- Low-contrast resolution or detectability (not applicable for planar acquisitions)
- Artifact evaluation"

Note: The following tests are recommended, but not required, for PET scanner testing: sensitivity, energy resolution, and count-rate performance.
Display Monitor Physics Testing

“For hospitals that provide computed tomography (CT), positron emission tomography (PET), nuclear medicine (NM), or magnetic resonance imaging (MRI) services: The annual performance evaluation conducted by the diagnostic medical physicist includes testing of image acquisition display monitors for maximum and minimum luminance, luminance uniformity, resolution, and spatial accuracy.”

Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.

Install a SMPTE pattern on all Imaging acquisition systems
“For hospitals that provide computed tomography (CT), positron emission tomography (PET), or nuclear medicine (NM) services: Prior to installation of new imaging equipment, replacement of existing imaging equipment, or modification to rooms where ionizing radiation will be emitted or radioactive materials will be stored (such as scan rooms or hot labs), a medical physicist conducts a structural shielding design* to specify required radiation shielding.”

Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.

* For additional guidance on shielding designs and radiation protection surveys, see National Council on Radiation Protection and Measurements Report No. 147 (NCRP-147).
"For hospitals that provide computed tomography (CT), positron emission tomography (PET), or nuclear medicine (NM) services: After installation of imaging equipment or construction in rooms where ionizing radiation will be emitted or radioactive materials will be stored, a medical physicist conducts a radiation protection survey to verify the adequacy of installed shielding.*

This survey is conducted prior to clinical use of the room."

Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.

* For additional guidance on shielding designs and radiation protection surveys, see National Council on Radiation Protection and Measurements Report No. 147 (NCRP-147).
The Hospital manages risks related to hazardous materials and waste…

For hospitals that provide computed tomography (CT), positron emission tomography (PET), or nuclear medicine (NM) services: Staff dosimetry results are reviewed at least quarterly by the radiation safety officer or diagnostic medical physicist to assess whether staff radiation exposure levels are “As Low As Reasonably Achievable” (ALARA) and below regulatory limits.

Note 1: For the definition of ALARA, please refer to U.S. Nuclear Regulatory Commission federal regulation 10 CFR 20.1003.

Note 2: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.
Nuclear Medicine Dose must be within 20%

“Before administering a radioactive pharmaceutical for diagnostic purposes, staff verify that the dose to be administered is within 20% of the prescribed dose, or, if the dose is prescribed as a range, staff verify that the dose to be administered is within the prescribed range.”

We recommend a signed NM prescription listing with “ranges”:
CT Dose Documentation

“The hospital documents the radiation dose (CTD\textsubscript{vol} or DLP) on every study produced during a computed tomography (CT) examination. The radiation dose must be exam-specific, summarized by series or anatomic area, and documented in a retrievable format.”

Note 1: This element of performance is only applicable for systems capable of calculating and displaying radiation doses.

Note 2: This element of performance does not apply to systems used for therapeutic radiation treatment planning or delivery, or for calculating attenuation coefficients for nuclear medicine studies.

Note 3: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.

Note 4: While the CTD\textsubscript{vol} and DLP are useful indicators for monitoring radiation doses emitted by the CT machine, they do not represent the patient’s radiation dose.
Hence, it appears that CT Dose Documentation is not needed in the clinical chart...
MRI Safety Risk Management

For hospitals that provide magnetic resonance imaging (MRI) services: The hospital manages safety risks in the MRI environment associated with the following:

- Patients who may experience claustrophobia, anxiety, or emotional distress
- Patients who may require urgent or emergent medical care
- Patients with medical implants, devices, or imbedded foreign objects (such as shrapnel)
- Ferromagnetic objects entering the MRI environment
- Acoustic noise
MRI Area Safety

For hospitals that provide magnetic resonance imaging (MRI) services: The hospital manages safety risks by doing the following:

- Restricting access of everyone not trained in MRI safety or screened by MRI-trained staff from the scanner room and the area that immediately precedes the entrance to the MRI scanner room.

- Making sure that these restricted areas are controlled by and under the direct supervision of MRI-trained staff.

- Posting signage at the entrance to the MRI scanner room that conveys that potentially dangerous magnetic fields are present in the room. Signage should also indicate that the magnet is always on except in cases where the MRI unit, by its design, can have its magnetic field routinely turned on and off by the operator.
MRI Incident Monitoring

“For hospitals that provide magnetic resonance imaging (MRI) services: The hospital collects data on patient burns that occur during MRI exams.

For hospitals that provide magnetic resonance imaging (MRI) services: The hospital collects data on the following:

- Incidents where ferromagnetic items entered the MRI scanner room
- Injuries resulting from the presence of ferromagnetic items in the MRI scanner room"
CT Dose Compared to “Expected Dose Ranges”

“The hospital reviews and analyzes incidents where the radiation dose (CTDIs vol or DLP) emitted by the computed tomography (CT) imaging system during diagnostic CT exams exceeded expected dose ranges identified in imaging protocols.”

Note 1: While the CTDIvol and DLP are useful indicators for monitoring radiation doses emitted by the CT machine, they do not represent the patient’s radiation dose.

Note 2: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.
CT Dose Comparisons start with a “Dose Log”

<table>
<thead>
<tr>
<th>Code</th>
<th>Patient Name</th>
<th>Procedure Description</th>
<th>Trace SCID</th>
<th>Trace D/C</th>
<th>Location</th>
<th>Entry Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 1

or software linked to your scanners…
Site-specific CT DRL's

Abdomen

<table>
<thead>
<tr>
<th>Date</th>
<th>Height</th>
<th>Weight</th>
<th>BSA</th>
<th>MaxCTD</th>
<th>TotalLP</th>
<th>DLP/BSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/13/14</td>
<td>60</td>
<td>165</td>
<td>1.53</td>
<td>16</td>
<td>321</td>
<td>210</td>
</tr>
<tr>
<td>1/27/14</td>
<td>57</td>
<td>190</td>
<td>1.36</td>
<td>42</td>
<td>1200</td>
<td>620</td>
</tr>
<tr>
<td>2/13/14</td>
<td>74</td>
<td>183</td>
<td>1.99</td>
<td>15</td>
<td>383</td>
<td>152</td>
</tr>
<tr>
<td>2/23/14</td>
<td>68</td>
<td>192</td>
<td>1.78</td>
<td>9</td>
<td>298</td>
<td>164</td>
</tr>
<tr>
<td>3/27/14</td>
<td>71</td>
<td>174</td>
<td>1.89</td>
<td>30</td>
<td>503</td>
<td>454</td>
</tr>
<tr>
<td>4/27/14</td>
<td>68</td>
<td>170</td>
<td>1.72</td>
<td>35</td>
<td>840</td>
<td>545</td>
</tr>
<tr>
<td>5/10/14</td>
<td>71</td>
<td>270</td>
<td>2.40</td>
<td>62</td>
<td>1034</td>
<td>765</td>
</tr>
<tr>
<td>5/15/14</td>
<td>72</td>
<td>240</td>
<td>2.30</td>
<td>64</td>
<td>2077</td>
<td>312</td>
</tr>
<tr>
<td>5/26/14</td>
<td>70</td>
<td>215</td>
<td>2.15</td>
<td>58</td>
<td>1993</td>
<td>325</td>
</tr>
<tr>
<td>6/6/14</td>
<td>63</td>
<td>225</td>
<td>2.03</td>
<td>66</td>
<td>1948</td>
<td>662</td>
</tr>
<tr>
<td>5/22/14</td>
<td>58</td>
<td>193</td>
<td>1.85</td>
<td>6</td>
<td>203</td>
<td>150</td>
</tr>
<tr>
<td>6/1/14</td>
<td>56</td>
<td>232</td>
<td>1.94</td>
<td>48</td>
<td>2256</td>
<td>742</td>
</tr>
<tr>
<td>6/9/14</td>
<td>60</td>
<td>205</td>
<td>1.90</td>
<td>52</td>
<td>1794</td>
<td>335</td>
</tr>
<tr>
<td>6/23/14</td>
<td>60</td>
<td>128</td>
<td>1.55</td>
<td>19</td>
<td>484</td>
<td>304</td>
</tr>
<tr>
<td>7/22/14</td>
<td>62</td>
<td>143</td>
<td>1.66</td>
<td>20</td>
<td>558</td>
<td>335</td>
</tr>
<tr>
<td>7/25/14</td>
<td>51</td>
<td>188</td>
<td>1.81</td>
<td>49</td>
<td>1813</td>
<td>594</td>
</tr>
<tr>
<td>8/21/14</td>
<td>75</td>
<td>226</td>
<td>2.31</td>
<td>40</td>
<td>1346</td>
<td>663</td>
</tr>
<tr>
<td>8/25/14</td>
<td>84</td>
<td>172</td>
<td>1.65</td>
<td>37</td>
<td>1883</td>
<td>642</td>
</tr>
<tr>
<td>8/31/14</td>
<td>93</td>
<td>215</td>
<td>2.00</td>
<td>48</td>
<td>1745</td>
<td>674</td>
</tr>
</tbody>
</table>

Low: 58
High: 75
Avg: 65.1
Stdev: 65.1

TotalLP 1843
DLP/BSA 36.3

CT Doses Compared to “Expected Dose Ranges”

<table>
<thead>
<tr>
<th>Study</th>
<th>DLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdomen/Pelvis</td>
<td>1082</td>
</tr>
<tr>
<td>Head</td>
<td>885</td>
</tr>
<tr>
<td>Chest</td>
<td>1285</td>
</tr>
<tr>
<td>Chest/Abd</td>
<td>664</td>
</tr>
<tr>
<td>CAP</td>
<td>972</td>
</tr>
<tr>
<td>Pelvis</td>
<td>893</td>
</tr>
<tr>
<td>L-Spine</td>
<td>1443</td>
</tr>
<tr>
<td>C-Spine</td>
<td>933</td>
</tr>
<tr>
<td>Sinuses</td>
<td>1013</td>
</tr>
</tbody>
</table>
Prior to Imaging, “Was patient’s age & recent exams considered when deciding on the most appropriate type of imaging exam?”

“For hospitals that provide diagnostic computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or nuclear medicine (NM) services: The hospital considers the patient’s age and recent imaging exams when deciding on the most appropriate type of imaging exam.”

Note 1: Knowledge of a patient’s recent imaging exams can help to prevent unnecessary duplication of these examinations.

Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.
Prior to Imaging, “Is the study being done “correctly”?"

“For hospitals that provide diagnostic computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or nuclear medicine (NM) services: Prior to conducting a diagnostic imaging study, the hospital verifies the following:

- Correct patient
- Correct imaging site
- Correct patient positioning
- For CT only: Correct imaging protocol
- For CT only: Correct scanner parameters”

Note: This element of performance does not apply to dental cone beam CT radiographic imaging studies performed for diagnosis of conditions affecting the maxillofacial region or to obtain guidance for the treatment of such conditions.
“Diagnostic testing and procedures are performed as ordered.

Diagnostic testing and procedures are performed within time frames defined by the hospital.

When a test report requires clinical interpretation, information necessary to interpret the results is provided with the request for the test.”
“The hospital identifies quality control and maintenance activities to maintain the quality of diagnostic images produced. The organization identifies how often these activities should be conducted.”
“The hospital maintains the quality of the diagnostic images produced.”

To meet this we recommend a Quarterly QC Committee for:

MRI
CT
Mammography
Nuclear Medicine
Ultrasound
CR

Director, QC techs, Physicist, Radiologist
Recommendations

1) Begin ACR Accreditation on CT & MRI, (~NM)

4) Begin detailed physics on gamma cameras

3) Form Quarterly Imaging QC Committee

4) Review the Current Documents

5) Wait for Christmas 2014 (Final Standards Published)
The End

Questions or Comments?

dukeeldridge@yahoo.com

kansasradiationphysics.com
The Joint Commission (TJC) is a US-based non profit, tax-exempt 501c organization accrediting more than 20,000 health care organizations and programs in the US.

A majority of state governments recognize Joint Commission accreditation as a condition of licensure and the receipt of Medicaid reimbursement.

TJC is based in the Chicago suburb of Oakbrook Terrace, IL.
TJC was formerly known as “the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) and prior to that as “the Joint Commission on Accreditation of Hospitals (JCAH).

TJC publishes an average fee of $46,000 for a full hospital survey, plus surveyor’s expenses.

Additional costs may be incurred relating to consultancy work directed at assisting a hospital to be successful in the accreditation process.
Modified Imaging Standards, 9/17/14 “for comment”
Proposed Revisions “For Comment”

Credentials & licensure verified, education & experience appropriate, criminal background check, employee health screening done…

Elements of Performance for HR.01.02.05

1. When law or regulation requires care providers to be currently licensed, certified, or registered to practice their professions, the hospital both verifies these credentials with the primary source and documents this verification when a provider is hired and when his or her credentials are renewed. (See also HR.01.02.07, EP 2)

 Note 1: It is acceptable to verify current licensure, certification, or registration with the primary source via a secure electronic communication or by telephone, if this verification is documented.

 Note 2: A primary verification source may designate another agency to communicate credentials information. The designated agency can then be used as a primary source.

 Note 3: An external organization (for example, a credentials verification organization [CVO]) may be used to verify credentials information. A CVO must meet the CVO guidelines identified in the Glossary.

2. When the hospital requires licensure, registration, or certification not required by law and regulation, the hospital both verifies these credentials and documents this verification at time of hire and when credentials are renewed. (See also HR.01.02.07, EP 2)

3. The hospital verifies and documents that the applicant has the education and experience required by the job responsibilities.

4. The hospital obtains a criminal background check on the applicant as required by law and regulation or hospital policy. Criminal background checks are documented.

5. Staff comply with applicable health screening as required by law and regulation or hospital policy. Health screening compliance is documented.
Proposed Revisions “For Comment”

Credentials & licensure verified, education & experience appropriate, criminal background check, employee health screening done...

6. The hospital uses the following information from HR.01.02.05, Elements of Performance 1–5, to make decisions about staff job responsibilities:
 - Required licensure, certification, or registration verification
 - Required credentials verification
 - Education and experience verification
 - Criminal background check
 - Applicable health screenings

7. Before providing care, treatment, and services, the hospital confirms that nonemployees who are brought into the hospital by a licensed independent practitioner to provide care, treatment, or services have the same qualifications and competencies required of employed individuals performing the same or similar services at the hospital.
 Note 1: This confirmation can be accomplished either through the hospital’s regular process or with the licensed independent practitioner who brought in the individual.
 Note 2: When the care, treatment, and services provided by the nonemployee are not currently performed by anyone employed by the hospital, leadership consults the appropriate professional hospital guidelines for the required credentials and competencies.
Proposed Revisions “For Comment”

Safety Content for employee orientation

HR.01.04.01

The hospital provides orientation to staff.

Elements of Performance for HR.01.04.01

1. The hospital determines the key safety content of orientation provided to staff. (See also EC.03.01.01, EPs 1-3)
 - Note: Key safety content may include specific processes and procedures related to the provision of care, treatment, and services; the environment of care; and infection control.

2. The hospital orient its staff to the key safety content before staff provides care, treatment, and services. Completion of this orientation is documented. (See also EC.02.03.01, EP 10 and IC.01.05.01, EP 6)

3. The hospital orient staff on the following: Relevant hospitalwide and unit-specific policies and procedures. Completion of this orientation is documented.

4. The hospital orient staff on the following: Their specific job duties, including those related to infection prevention and control and assessing and managing pain. Completion of this orientation is documented. (See also IC.01.05.01, EP 6; IC.02.01.01, EP 7; IC.02.04.01, EP 2; RI.01.01.01, EP 8)
Proposed Revisions “For Comment”
Diagnostic testing...

PC.01.02.15
The hospital provides for diagnostic testing.

Elements of Performance for PC.01.02.15

1. Diagnostic testing and procedures are performed as ordered.

2. Diagnostic testing and procedures are performed within time frames defined by the hospital.

3. When a test report requires clinical interpretation, information necessary to interpret the results is provided with the request for the test.
The hospital compiles and analyzes data.

Elements of Performance for PI.02.01.01

1. The hospital compiles data in usable formats.

2. The hospital identifies the frequency for data analysis.

3. The hospital uses statistical tools and techniques to analyze and display data.

4. The hospital analyzes and compares internal data over time to identify levels of performance, patterns, trends, and variations.

13. When analysis reveals a problem with the adequacy of staffing, the leaders responsible for the hospitalwide patient safety program (as addressed at LD.04.04.05, EP 1) are informed, in a manner determined by the safety program, of the results of this analysis and actions taken to resolve the identified problem(s). (See also LD.03.05.01, EP 7)

14. At least once a year, the leaders responsible for the hospitalwide patient safety program review a written report on the results of any analyses related to the adequacy of staffing and any actions taken to resolve identified problems. (See also LD.04.04.05, EP 13)